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Abstract. We address the problem that the cross section for the collisions of unstable particles diverges, if
calculated by standard methods. This problem is considered for beams much smaller than the decay length
of the unstable particle, much larger than the decay length and finally also for pancake- shaped beams.
We find that in all cases this problem can be solved by taking into account the production/propagation of
the unstable particle and/or the width of the incoming wave packets in momentum space.

1 Introduction

When one applies the Feynman Rules and the Golden Rule
to a collision of unstable particles, the cross section turns
out to diverge. We summarize how this happens. The di-
vergence occurs for instance in the graph
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The lower half of this diagram looks like the decay of the
muon. The consequence is that the momentum k may be
on its mass shell. After all, that is what one gets from the
decay of a muon: a muon neutrino on its mass shell. The
propagator of this muon neutrino contains a factor

∆(k) =
i

k2 + iε
(2)

that gets squared and integrated over as the Golden Rule
tells us to do. Because the neutrino that contributes the
just given factor can be on its mass shell, we find that
in lowest order in ε the result will go as ε−1. This is a
divergent quantity since ε is taken to be infinitesimal. This
problem is of relevance for muon colliders as was already
noted in [1].

The question that naturally poses itself is if the cross
section really diverges, and if so, how this can be regular-
ized, and if not, how we can compute it. In general we can
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say that there are two possibilities to solve the question
of the divergent cross section. The first is that one takes
into account that unstable particles cannot really be in
or out states. This can be done by considering Feynman
graphs that include the production process of the unstable
particle. The second possibility is that one takes into ac-
count that the incoming wave packets are not really sharp
momentum states but that we always have interference
between states with the same total momentum but with
some of the momentum moved from one incoming particle
to the other. This is of importance if the peak structure of
the matrix element is sharper than the size of the incom-
ing wave packet in momentum space. We indeed have this
in the case of the unstable particle, since the propagator
that causes the divergence has no particular size attribute,
except for the ε, which is taken to be infinitesimal.

This problem has mainly been discussed for the case
that would be applicable to, for instance, muon colliders.
Cf., [2, 3, 6]. We will mostly address a case of academic
interest that has been considered alongside the realistic
case, namely that of very wide beams (i.e., much larger
than the decay length of the muon). We will try to ap-
ply the methods applicable to the realistic case also in
the case of infinitely wide beams. For this we will need
some modifications to the realistic case. This case is con-
sidered in the next section. We reconsider it because we
use different, more covariant notations, best introduced in
a somewhat more familiar setting, and also because we
have some points to add.

Finally we consider the case of pancake-shaped beams
(i.e., much larger than the decay length in the transversal
directions and much smaller than that in the longitudinal
direction).

2 The realistic case

Here we discuss the solution as would be applicable in
muon colliders, that is, for beams of which the size is much
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smaller than the decay length of the unstable particle. In
this case the propagator of the unstable particle confines
its momentum to the mass-shell and because production
and collision can be chosen to be well-separated in space,
we need not worry about the production process. There is,
however, still the point that the matrix element is peaked
sharply enough to notice interference between states where
some momentum is shifted from one incoming particle to
the other. This case has been solved in [2], however we
again present this here using notations that are manifestly
covariant.

The quantum distribution function n(p, r), introduced
in [3], is used to describe the particles. It is defined to be
given by

n(p, r) =
m

(2π)3

∫
d4∆δ(p ·∆)

×φ(p+ 1
2∆)φ(p− 1

2∆)∗ e−i∆·r. (3)

The δ(p · ∆) is used to confine the particle to its mass
shell. This implies that we use the approximation that
the components of ∆ are much smaller than the ones of p.
The quantum distribution function contains as much in-
formation about the state of a particle as a density matrix.
From it the probability densities in momentum and posi-
tion space can be found. They are given by

ρ(p) =
p0

m

∫
d3r n(p, r); ρ(r) =

∫
d̃p
p0

m
n(p, r). (4)

Both are (in the approximation that they are sharply
peaked in momentum space) zeroth components of four-
vectors. This should, of course, be the case with densities.
The probability measure that belongs to them is respec-
tively d̃p (which is by definition equal to d3p

(2π)32p0 ) and d3r.
This looks pretty much as if n(p, r) were a joint probability
for r and p, but of course such a thing cannot really exist
in quantum mechanics and actually n(p, r) does not need
to be a real function, which discards it as a probability
density.

We extend the definition of the luminosity to

dL(p1, p2, ρ) = d̃p1 d̃p2

√−GD
m1m2

×
∫
d4r n1(p1, r)n2(p2, r + ρ). (5)

This reduces to the normal definition for dL by setting ρ =
0. The GD that occurs here stands for “Gramm determi-
nant” and is equal to p2

1p
2
2 − (p1 · p2)2. Also the definition

of the cross section is extended, namely to

dσ(p1, p2, ∆) =
1

4
√−GD

(2π)4δ(p1 + p2 − q) d̃q1 · · · d̃qn
×M(p1 + 1

2∆, p2 − 1
2∆, q)

×M(p1 − 1
2∆, p2 + 1

2∆, q)
∗. (6)

This gives the well-known definition for the cross section
if we take ∆ = 0. The exact expression for the number of
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Fig. 1. dσ/dt (fb/GeV2) vs. t (GeV2) for
√

s = 100 GeV

events W (see for instance [5]) can, using these definitions,
be written as

W =
∫
dL(p1, p2, ρ)

d4∆

(2π)4
d4ρ e−i∆·ρdσ(p1, p2, ∆). (7)

Normally one assumes that dσ does not vary much with ∆
and for that reason it is safe to put ∆ = 0. Then the inte-
grals over ∆ and ρ become trivial and the familiar result
that “number of events is cross section times luminosity”
is obtained. In our case, however, σ has a pole at ∆ = 0
so this approximation cannot be made.

The reasoning about how to get a finite cross section
is essentially identical to what is given in [2], so we will
not present it here. In the end the result is

σ = aπ

∫
dσred

1
|k⊥|δ(k

2 −m2), (8)

where the “red” in dσred stands for “reduced” meaning
that the factors 1/(k2 ± iε) that cause the divergence have
to be left out. a is the transverse size of the beam. We take
this to be given by a =

√
π σ =

√
π · 10µm, where (for

round beams) σ is the standard deviation in the position of
the particles in the beam in either direction perpendicular
to the beam. This was also done in [2]. Because this part
of the cross section is proportional to this size, the effect is
called “linear beam size effect”. If there are contributions
to the cross section from parts of phase space away from
the singularity they should be added separately to the
cross sections. These parts do not depend on the beam
size. Below we will see that such a separation arises rather
naturally from the shape of the graph of dσ/dk2. The part
of the cross section that has to do with regions of phase
space away from the singularity will be called the “regular
cross section”, while the part that comes from regions near
the singularity (or singularities) will be called the “semi-
singular cross section”.

As in [2], we consider the process µ−+µ+ → W++e−+
ν̄e. For dσ/dt at 100 GeV we find the graph in Fig. 1. The
infinite spike at t = 0 is caused by the instability. Figure 2
shows a detail of the same graph. Now the singularity is
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prominently present. The reader can compare the numbers
on the axes of both graphs to get an idea how narrow the
singularity actually is. To be able to calculate the regular
part of the cross section without having to worry about
the singularity, the cut t < −m2

µ is used (as was done
in [2]). The two graphs just shown, justify this cut (i.e.,
m2

µ ∼ 0.01 GeV2 which is in the neighbourhood of the
minimum of dσ/dt).

The total cross section for pseudo-singular and reg-
ular cross sections are plotted in Fig. 3. For the regular
cross section we find the same graph as in [2], but for
the semi-singular cross section our graph is about a fac-
tor 1.7 higher. The reason for this difference appears to
be twofold. In the first place, we did our calculations from
standard model coupling constants, while [2] expresses the
cross section in other decay widths and cross sections. If
we take this into account, the factor 1.7 becomes a fac-
tor 2. This factor 2 is then due to an error in equation 46

in [2]. This equation should have an extra factor 2 on the
right hand side.

Consequently we find that the semi-singular cross sec-
tion dominates up to about 113 GeV. [2] has 105 GeV.
Furthermore it should be noted that at about 90 GeV
the semi-singular and regular cross sections are about the
same order of magnitude because the regular one has a
peak there, caused by the Z particle. For

√
s a bit above

threshold the semi-singular cross section dominates
strongly. At about, say,

√
s ∼ 85 GeV one can safely for-

get about the regular part. Above
√
s ∼ 150 GeV the

pseudo-singular cross section does not play any role any-
more. This is the case up to arbitrary high energies be-
cause asymptotically the semi-singular cross section goes
down as 1/(s

√
s), while the regular one goes down as 1/s.

To calculate these cross sections, six diagrams involv-
ing γ,W± and Z0 as fundamental bosons were added. The
algebra necessary was done by the C++ computer alge-
bra library GiNaC which is described in [9]. After that the
integrations were carried out by adaptive Simpson integra-
tion. Unstable intermediate particles were given propaga-
tors using the iMΓ prescription. This, of course, raises
the issue of gauge invariance. It was checked that for high
energy the cross section goes down as 1/s, but there may
still be unnoticed terms suppressed by a factor Γ 2/M2

that did not show up in these calculations. The authors
hope to address these issues in a subsequent paper.

In practice one does not need the cut-off t < −m2
µ.

This is because this cut-off is already implied by the cut-
offs imposed by measurability. If we take

√
s = 100 GeV

and demand that the energy of the outgoing electron of
the pseudo-singular process is at least 1 GeV and that the
angle under which this electron appears is at least 2◦ we
have made it impossible for the muon neutrino to be on its
mass shell (actually we then find that t indeed is always
negative and has an upper limit of about −5m2

µ).
However, if one wants to include the linear beam size

effect in the normal Monte Carlo integration procedure,
one can do this by doing the replacement

i

k2 + iε
→ i

k2 + i|k⊥|/a . (9)

This, in spite of its ad-hoc appearance, gives precisely the
correct answer. It effectively introduces a decay to the
muon neutrino to account for the fact that it can no longer
collide after it has left the beam. This way of handling
the divergence supposes that number of particles in the
beam goes to zero exponentially as we leave the beam
(i.e., the iMΓ prescription is about exponential decay),
which is not terribly realistic, but in most cases this will
not matter.

3 Infinitely wide beams

3.1 The wrong way

The method of calculation introduced in [4] (to be called
Ginzburgs method in the rest of this section) starts by
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observing that the propagator of an unstable particle is
given by (p2 −m2 + imΓ )−1. We then “conclude” that the
mass of the unstable particle has acquired an imaginary
part. The four momentum-squared of this particle should
be complex too. In its rest frame it is given by

p1 = (m− iΓ/2,0). (10)

We now write for the “new” value of k2, that is the value
that takes the complex momentum components into ac-
count,

k2
new = (p1 − q)2 = m2 − imΓ + q2 − 2(m− iΓ )q0, (11)

where q = q1 + q2 as drawn in (1). For some reason we
take the same values for the components of q but only
change the components of p1 and k. Normally (i.e., with-
out complex momentum components), the value of q0 is
given by

q0 =
m2 + q2 − k2

2m
. (12)

After substituting this, and neglecting the small quantity
proportional to k2Γ , we obtain

k2
new = k2

old − i
Γ

2m
(m2 − q2). (13)

This complex value then replaces the one given in (2), and
a finite result is obtained.

The problem with all this is, of course, that it is not
terribly difficult to think of a process where one of the out-
going/incoming particles involved is unstable and then an
incoming complex momentum component has, by momen-
tum conservation, no place to go. Significantly, we never
hear about momentum conservation for the other vertex
in the diagram.

In [6] it is shown that the result obtained by using the
here described method is exactly what one would expect
for a muon that decays in a medium of anti-muons. This
result is

σ =
∫

(1 − cos θ)w(ω) dω
sin θ dθ dφ

4π
σνµ→W (sνµ). (14)

The factor w(ω) dω sin θ dθ dφ/4π is the probability mea-
sure of finding a muon neutrino with a certain momentum.
This calculation is done in the rest frame of the decaying
muon. However, three remarks are in order here1.

1. To obtain this result, the definition of the quantity
cross section has to be modified;

2. The same modification of definition can be aplied to
our result (i.e., (26), to be derived in the next section)
and the result will be the same;

3. It is a bit of a coincidence that the modified cross
section of [6] turns out to have the same value as
Ginzburgs method

1 An email discussion with V.G. Serbo was helpfull to get
these points completely clear

Let us discuss these points in this order.
Firstly (1), the number of events W is related to the

cross section via

W = V4

√
(J1 · J2)2 − J2

1J
2
2 σµµ, (15)

where V4 is the four-volume in which the beams overlap
and J1,2 denotes the four-flux of the two beams. The space
integral over J1 is the number-of-particles four-vector Nµ

1 ,
defined by

Nµ = Nuµ, (16)

with N the number of particles. We thus have

dW

dt
=

√
(N1 · J2)2 −N2

1J
2
2 σµµ. (17)

On the other hand, we expect to be able to calculate
the number of events from considering collisions between
muon neutrino’s and muons, taking the momentum distri-
bution of the muon neutrino’s into account. Doing so we
find

dW

dt
=

∫
w(ω) dω

sin θ dθ dφ
4π

×
√

(Nν(ω) · J2)2 −Nν(ω)2J2
2 σνµ(s(ω)) . (18)

After specializing to the rest frame of the µ− we see that
the division of the two flux factors gives the 1− cos θ (For
this one has to assume that k2 = p2

2 = 0.) so that we
indeed find (14) back. The modification to the definition
of the cross section is that one equates these two dW/dt’s.
The first dt refers to the time the µ− track spends in the
µ+ cloud while the second dt refers to the time the decay
product spends in this cloud. In a µ+ cloud of infinite size
equating these two indeed would seem to be the only thing
that could give a finite result. However, one should realize
that for any cloud of particles of finite size the standard
definition of the cross section involves and integral over
time and then the quotient of the two just mentioned times
will appear in the result. This will depend on beam shapes.

Secondly (2), also our result (i.e., (26)), to be derived
in the next section, contains a factor d4r. One could also
pull a factor dt out of this and obtain exactly the same
result as by Ginzburgs method. So, whether or not one
likes the equating of dW/dt’s mentioned in the foregoing
point, one does not need complex momentum conservation
to obtain the result that belongs to it.

Thirdly (3), the matrix element, as seen in position
space, used in Ginzburgs method, is not as advertised
in [6]. To see this, we should realize that the method of
Ginzburg only modifies the propagator of the muon neu-
trino. In particular, nothing is altered in the prescription
of removing external propagators. The consequence of this
is that the number of muons does not decrease. After all,
this prescription was designed to describe a stable particle
that comes in from infinity. This means that the produc-
tion rate of neutrino’s inside the µ+ cloud is given (in the
rest frame of the µ−) by

dNνµ

dt
= NµΓµ . (19)
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Thus, every muon produces a large number of neutrino’s.
Because of the conservation of complex momenta, the
muon neutrino gets a decay time equal to the decay time
one would expect for the muon. The consequence is that
the number of muon neutrino’s at a particular time is
given by

Nνµ(t) =
∫
dt′ θ(t− t′) e−Γµ(t−t′) dNνµ

dt′
= Nµ. (20)

So in the method of Ginzburg the number of neutrino’s
is equal to the number of muons not because every muon
decays into a single muon neutrino but because the decay
constant of the muon neutrino is artificially made equal
to its production constant. That this gives the same result
as equating the two dW/dt’s as discussed under point (1)
can be easily understood because the muon neutrino’s now
only exist near the path of the µ−, so the two dt’s now
both refer to the time the µ− spends in the µ+ cloud.

3.2 The right way

Here we take the production process of the unstable parti-
cle into account. This is reasonable because unstable par-
ticles cannot really be asymptotic states. In the context
of scalar fields, Veltman (cf., [7]) has shown that if one
takes only stable particles for asymptotic states, one gets
a unitary S-matrix. Thus we must describe the unstable
particle as an internal line of a larger Feynman graph that
includes the production process. Consequently its momen-
tum can have four independent components. Of course, we
really do not want to include much information about the
production process of the unstable particle in our calcula-
tions. For this reason we define the wave function of the
unstable particle to be given by

ψ(p) =
√

2
m1Γ

∫
d̃pa d̃pb φa(pa)φb(pb)

×(2π)4δ4(pa + pb − p) M(pa, pb, p), (21)

where M is the matrix element (or perhaps the sum of ma-
trix elements) that describe the production process. This
definition assumes that the unstable particle in produced
in a two-to-one collision, however we can safely include
terms where the production process has as many in- or
outgoing particles as we would like. The outgoing parti-
cles are represented by complex conjugates of the wave
functions that they are measured to be in. Such a mea-
surement should be carried out in order to make sure that
the momentum of the unstable particle is fixed very ac-
curately. When doing a calculation with this we still have
to include the propagator of the unstable particle. The
just given wave function only replaces the part of the ma-
trix element that describes the production process, not the
propagation of the unstable particle. For this propagator,
the replacement

i

p2 −m2 + imΓ
→ 1

mΓ
(22)

should be used, since the momentum of the unstable par-
ticle is assumed to be fixed—by the just-described mea-
surement procedure—on its mass shell so accurately that
a function of which the width is of the order Γ (as the
propagator is) cannot notice the difference.

The normalization of this wave function, as occurs in
its definition above, was obtained by considering the pro-
duction process followed by the decay process. The num-
ber of events in this is demanded to be unity because we
choose our wave function to describe one unstable particle.

In this case the definition of the quantum distribution
function should be modified a bit. It becomes

n(p, r) =
∫

d4∆

(2π)4
e−i∆·rψ(p+ 1

2∆)ψ(p− 1
2∆)∗. (23)

Probability densities in momentum and position space can
be obtained from this. They are given by

ρ(p) =
∫
d4r n(p, r); ρ(r) =

∫
d4p

(2π)4
n(p, r). (24)

The luminosity is now defined by

dL(p1, p2, ρ) =

√−GD(p1, p2)
m1m2Γ

d4p1

(2π)4
d̃p2

×
∫
d4r n1(p1, r)n2(p2, r + ρ). (25)

This is for the case of a stable particle colliding with an
unstable one. The reader will presumably have no diffi-
culty figuring out what to use for two unstable particles
if he compares this to (5). The cross section is defined in
exactly the same way as in Sect. 2. Furthermore, the just
given definition for the luminosity was chosen in such a
way that (7) is kept the same too.

After having introduced this, the calculation of the
number of events proceeds along exactly the same lines as
in [2] and we will not present it here. The result is

W =
1
m2

∫
d4p1

(2π)4
d̃p2 d̃k d

4r

×
∫ ∞

0
dαn1(p1, r)n2(p2, r + αk)fs(k|p1)

×
√

(k · p2)2 − k2p2
2 σ(k, p2). (26)

The interpretation of the above formula is that the unsta-
ble particle decays at position r, the decay product has
momentum k and then collides with the other particle at
position r+αk, where α is a positive number, as one would
expect. If we specialize to the case where the longitudinal
beam size is much larger than the transversal one, we find
back formula (8). The densities that occur here should
be considered to be densities of decay events. It is per-
fectly natural that decay events are characterized by four
co-ordinates.

4 Pancake-shaped beams

In this section we will show that it is possible to trans-
fer some of the imΓ to the muon neutrino propagator
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while keeping a clear conscience. This is in the context
op pancake-shaped beams. In this case, we assume the
transversal beam size to be much larger than the de-
cay length 1/Γ , while the longitudinal beam size is much
smaller than the decay length. We do this by using mo-
menta that have a large width in the longitudinal direction
and a small width in the transversal direction. We assume
that the unstable particle is produced at a position away
from the position where it collides. We do this by trans-
lating the particle having momentum p2 in (1) an invari-
ant distance s (as seen by the p1-particle) away from the
origin. This is done by a adding factor eisp1·p′

2/m1 in the
matrix element. The complex conjugated matrix element
gets a factor e−isp1·p′′

2 /m1 . The variables p′
2 and p′′

2 are
integration variables in momentum space. They integrate
over the momentum distribution.

Furthermore, we take into account (as we have done
for the case of infinitely wide beams) the fact that unsta-
ble particles cannot really be in/out states. The real ma-
trix element describing the collision process includes the
production of the unstable particle. The incoming unsta-
ble particle differs from a stable one in that its momentum
need not be on its mass shell. The momentum distribution
is determined by its propagator ((p′

1)
2 − m2

1 + im1Γ )−1,
which makes sure that the momentum is peaked around
the mass shell.

We consider the quantity F which contains the factors
of the matrix element that play a role in making the cross
section finite. These are the factors that are peaked sharp
enough to notice that p′

1 (and p′
2, of course) do not have

a definite value but are peaked around the value p1. It is
given by

F =
eisp′

2·p1/m1

(p′
1)2 −m2

1 + im1Γ

1
(q2 − p′

2)2 −M2 + iε
. (27)

We now integrate over the value of (p′
1)

2. The integration
path is chosen such that outgoing momenta are kept fixed,
while the change ∆µ of the incoming momenta is taken to
be a linear combination of these momenta. Thus momenta
are parameterized by

(p′
1)

µ(t) = (p′
1)

µ(0) + t∆µ;

(p′
2)

µ(t) = (p′
2)

µ(0) − t∆µ;

(k′)µ(t) = (k′)µ(0) + t∆µ,

(28)

where t is just a parameter and has nothing to do with the
t-channel. Furthermore we should demand that the value
of (p′

2)
2 is kept fixed. It is not very difficult to think of

a scatter setup where the particle with momentum p2 is
a stable one, so we had indeed better not vary this one.
These demands are satisfied by taking

∆µ =
1
2

(p1 · p2)p
µ
2 − p2

2p
µ
1

(p1 · p2)2 − p2
1p

2
2
. (29)

We take a linear combination of p1 and p2 because of the
pancake shape. These momenta only have a sufficiently
large spread in momentum space in the longitudinal direc-
tion, so this direction should be chosen for the integration

path. Filling this into (27) and using contour integration
over t, we find that for the matrix element the integration
boils down to the substitution

F → − 2πi
eisp2·p1/m1−sΓ/2

k2 −M2 − iαm1Γ
δ(p2

1 −m2
1)

− 2πi
eisp2·p1/m1

p2
1 −m2

1 + im1Γ
θ(α)δ

(
α−1(k2 −M2)

)
, (30)

where α = 2∆ · q2.
We see that this no longer causes a divergence, so we

will square this and work out the Golden Rule to find a
cross section. The square of both terms contains a Breit-
Wigner of which the square can be approximated by a
δ function. However, before we do this, we should discuss
the meaning of the two terms. In the first one we effec-
tively first integrate over the width of the unstable particle
and then over the width of the decay product. In the sec-
ond term it is the other way around. The interpretation is
that the width that is integrated over first corresponds to
the smallest virtuality (this corresponds to the largest dis-
tance scale). Thus, the first term describes events where
the unstable particle does not decay or decays nearby the
spot where the collision happens. The second term de-
scribes events where the unstable particle decays long be-
fore the decay product collides. We interpret this as the
case where the unstable particle is far off shell and is never
really produced but already decays during the production
process. We decide to drop the second term and keep the
first one. If we square the term that we decided to keep,
we get the familiar decay law (i.e., the e−Γs).

The consequence of the just described procedure is
that our squared matrix element contains a factor

1
(k2 −M2)2 + α2m2

1Γ
2
1

∼ π

αm1Γ
δ(k2 −M2). (31)

For the cross section, we find

σ(p1, p2) =
∫
d̃k

√
(p2 · k)2 − p2

2k
2√

(p1 · p2)2 − p2
1p

2
2

e−sΓ

α

×σ(p2, k)fs(k|p1). (32)

The quotient of flux factors is the generalization of the
1 − cos θ in (14). The only factor that we might not have
expected is the 1/α.

We can shed light on this factor 1/α in the rest frame
of the stable particle (the one with momentum p2). In that
frame we have, writing out all inner products,

σ(p1, p2) =
∫
d̃k

e−sΓ

| cos θ|σ(p2, k)fs(k|p1). (33)

We see that the flux factor together with the 1/α turn
into a factor 1/ cos θ. This is because we are describing the
collision of two pancake-shaped beams. The p2 particle is
taken to be in its rest frame here, so it should be imagined
to be a pancake that does not move. The decay product
that collides with a particle in the pancake emerges under
an angle θ. Because of this, it sees the thickness of the
pancake enlarged by a factor 1/ cos θ.
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5 Conclusions

The problem that the cross section diverges for colliding
unstable particles can be considered for the case of beams
much smaller than the decay length or for beams much
larger than the decay length. We also had a look at what
happens if two pancake-shaped beams collide.

In the first case, the divergent part of the cross sec-
tion is proportional to the transverse beam size. We can
confirm the result of [2] that for

√
s ≈ 100 GeV the part

of the cross section independent of the beam size and the
part proportional to it are of the same order of magnitude.
However, for higher energies (

√
s > 150 GeV already) the

part proportional to the beam size is at least three orders
of magnitude smaller. At still higher energies this becomes
even more, so for high energy colliders the linear beam size
effect can safely be ignored. In practice this can be done
by imposing cuts as one would have in a collider.

In the second case, it should not be “solved” by intro-
ducing complex momentum components. This artifically
introduces a decay time for the decay product, which does
not seem to be a real physical effect. The authors of this
paper are not aware of the existence of a law of “con-
servation of decay width”. The result that is obtained by
the introduction of complex momentum co-ordinates can
(if we allow for a not unreasonable modification in the
definition of the cross section) also be obtained by using
our methods. Our methods involve considering the wave
function of the unstable particle to be a function of four
momentum components. This is reasonable because the
unstable particle cannot be an in/out state and really is
an internal line of a bigger Feynman diagram. After this,
the reasoning proceeds along the same lines as for the case
of realistic beams. We find (if we do not allow for the just
mentioned modification and assume cylindrically shaped
beams) the same linear beam size effect.

Another method, namely integrating over the width of
p2 of the unstable particle, is the right thing to do for the
case of pancake-shaped wave packets.

One might ask to what extent delicate gauge cancel-
lations are destroyed by our approach. We do not expect
these problems to be qualitatively worse than those en-
countered in, say, calculating loop corrections to LEP-2
processes (cf. [8]). This point will be addressed in a forth-
coming publication.
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